All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Carbon coated tungsten doped molybdenum oxide nanowires and their composite with graphitic carbon nitride for photocatalysis and antibacterial studies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402K8F" target="_blank" >RIV/61988987:17310/23:A2402K8F - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0272884222036501?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0272884222036501?via%3Dihub</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Carbon coated tungsten doped molybdenum oxide nanowires and their composite with graphitic carbon nitride for photocatalysis and antibacterial studies

  • Original language description

    In present study, 1D carbon coated tungsten doped molybdenum oxide nanowires (WMO@C) were prepared by one step hydrothermal scheme to overcome the harmful effects of toxic dyes and infectious bacterial strains. The WMO@C nanowires were then integrated with graphitic carbon nitride (gCN) to synthesize their ternary nanocomposites to boost up photocatalytic and antibacterial activities for environmental remediation. XRD results indicated orthorhombic structure of WMO@C with crystallite size 4.3 which reduced to 3.53 by integration of gCN. SEM micrograph revealed 1D nanowires of synthesized nanophotocatalyst with average diameter of 192.33 nm. The WMO, WMO@C and WMO@C/gCN nanocomposites were effectively employed for the degradation of colored organic contaminants methylene blue (MB), crystal violet (CV), malachite green (MG) and colorless diverse effluents benzimidazole and benzoic acid and more for inhibition sterilization of P. aeruginosa and S. aureus microbes. After 120 min, 91% of MB, 89% of CV, 92% of MG, 65% of benzimidazole and 69% of benzoic acid were degraded by WMO@C/gCN nanocomposites under visible light. The superior photocatalytic competency of WMO@C/gCN was attributed to the enlarged surface area, slow photo-induced electron-hole recombination rate, significant charge transfer capacity and strong redox ability due to chemical bonds developed between gCN and 1D WMO@C nanowires. Different important reaction parameters such as pH effect, temperature effect, change in dye concentration and photocatalyst dose were studied. Facile synthetic route and outstanding photodegradation and antimicrobial performance proposes that WMO@C/gCN nanocomposites possess high potential for environmental remediation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CERAM INT

  • ISSN

    0272-8842

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    6906-6922

  • UT code for WoS article

    000923663200001

  • EID of the result in the Scopus database