Local hidden variable values without optimization procedures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402KRK" target="_blank" >RIV/61988987:17310/23:A2402KRK - isvavai.cz</a>
Result on the web
<a href="https://quantum-journal.org/papers/q-2023-02-02-911/" target="_blank" >https://quantum-journal.org/papers/q-2023-02-02-911/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22331/q-2023-02-02-911" target="_blank" >10.22331/q-2023-02-02-911</a>
Alternative languages
Result language
angličtina
Original language name
Local hidden variable values without optimization procedures
Original language description
The problem of computing the local hidden variable (LHV) value of a Bell inequality plays a central role in the study of quantum nonlocality. In particular, this problem is the first step towards characterizing the LHV polytope of a given scenario. In this work, we establish a relation between the LHV value of bipartite Bell inequalities and the mathematical notion of excess of a matrix. Inspired by the well developed theory of excess, we derive several results that directly impact the field of quantum nonlocality. We show infinite families of bipartite Bell inequalities for which the LHV value can be computed exactly, without needing to solve any optimization problem, for any number of measurement settings. We also find tight Bell inequalities for a large number of measurement settings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quantum
ISSN
2521-327X
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
2023-02-02
Country of publishing house
AT - AUSTRIA
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000931565100001
EID of the result in the Scopus database
2-s2.0-85171166350