All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An operational calculus approach to Hilfer–Prabhakar fractional derivatives

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402L44" target="_blank" >RIV/61988987:17310/23:A2402L44 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s43037-023-00258-1" target="_blank" >https://link.springer.com/article/10.1007/s43037-023-00258-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s43037-023-00258-1" target="_blank" >10.1007/s43037-023-00258-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An operational calculus approach to Hilfer–Prabhakar fractional derivatives

  • Original language description

    We investigate the general Hilfer-Prabhakar fractional derivative operator using the algebraic machinery of Mikusinski's operational calculus. We also provide some important characterisations in terms of initial conditions for the function spaces used in the fractional Mikusinski method. Armed with an algebraic interpretation of the Hilfer-Prabhakar derivative, we solve a variety of fractional differential equations involving this operator, including multi-order and multi-term ones.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Banach J Math. Anal. Appl.

  • ISSN

    2662-2033

  • e-ISSN

    1735-8787

  • Volume of the periodical

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    29

  • Pages from-to

  • UT code for WoS article

    000954179100001

  • EID of the result in the Scopus database

    2-s2.0-85151125640