Magnetic Schroedinger operator with the potential supported in a curved two-dimensional strip
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA2502O3O" target="_blank" >RIV/61988987:17310/24:A2502O3O - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00009-024-02651-y" target="_blank" >https://link.springer.com/article/10.1007/s00009-024-02651-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00009-024-02651-y" target="_blank" >10.1007/s00009-024-02651-y</a>
Alternative languages
Result language
angličtina
Original language name
Magnetic Schroedinger operator with the potential supported in a curved two-dimensional strip
Original language description
We consider the magnetic Schroedinger operator $H = (inabla + A)^2 - V$ with a non-negative potential $V$ supported over a strip which is a local deformation of a straight one, and the magnetic field $B := rot(A)$ is assumed to be non-zero and local. We show that the magnetic field does not change the essential spectrum of this system, and investigate a sufficient condition for the discrete spectrum of $H$ to be empty.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MEDITERR J MATH
ISSN
1660-5446
e-ISSN
16605446
Volume of the periodical
—
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
1-15
UT code for WoS article
001225929300004
EID of the result in the Scopus database
2-s2.0-85191968032