On a theorem of Borel on diophantine approximation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA250397S" target="_blank" >RIV/61988987:17310/24:A250397S - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/10.1007/s11139-024-00922-6" target="_blank" >https://link.springer.com/10.1007/s11139-024-00922-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11139-024-00922-6" target="_blank" >10.1007/s11139-024-00922-6</a>
Alternative languages
Result language
angličtina
Original language name
On a theorem of Borel on diophantine approximation
Original language description
A theorem of É. Borel’s asserts that one of any three consecutive convergents of a real number a, satisfies the special inequality with C. In this paper we give more precise information about the constant C.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The Ramanujan Journal
ISSN
1382-4090
e-ISSN
1572-9303
Volume of the periodical
—
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
897-915
UT code for WoS article
001285466400001
EID of the result in the Scopus database
2-s2.0-85200581112