Particular Analysis of Regression Effect Sizes Applied on Big Data Set
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17450%2F24%3AA2502NWR" target="_blank" >RIV/61988987:17450/24:A2502NWR - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-53552-9_18" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-53552-9_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-53552-9_18" target="_blank" >10.1007/978-3-031-53552-9_18</a>
Alternative languages
Result language
angličtina
Original language name
Particular Analysis of Regression Effect Sizes Applied on Big Data Set
Original language description
In accordance with quantitative research, a wide spectrum of techniques can be seen. In the case of cardinal variables, regression analyses are suitable tools for the expression of dependences between observed variables. One of their options, the regression coefficients have been considered. However, the effect sizes analyses have not been so widely seen in research works in general. In this contribution, the big data analysis is being presented focusing on the regression effect size behavior following changing the number of samples. Two-dimensional and three-dimensional computations are applied with utilized mathematical regression models. The stable or stochastic behavior of Cohens f squared is discussed in the particular applied quantitative research of the OECD PISA with 397708 answers from respondents.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Networks and Systems
ISBN
978-3-031-53551-2
ISSN
2367-3370
e-ISSN
2367-3389
Number of pages
7
Pages from-to
203-209
Publisher name
Springer
Place of publication
Cham
Event location
Zlín
Event date
Oct 11, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—