Flipping and cyclic shifting of binary aggregation functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F09%3AA0900TWQ" target="_blank" >RIV/61988987:17610/09:A0900TWQ - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Flipping and cyclic shifting of binary aggregation functions
Original language description
We introduce two types of transformations of random variables, called flipping and cyclic shifting. As these transformations preserve monotonicity at the level of univariate cumulative distribution functions, they can be used to develop corresponding coordinate-wise transformations of binary aggregation functions. We lay bare the admissibility of these transformations, i.e. the necessary and sufficient conditions under which they result in a binary aggregation function. We investigate which additional properties, such as the 1-Lipschitz property and 2-increasingness, entail these admissibility conditions. Moreover, we point out which of these properties are preserved under flipping and/or cyclic shifting. Interestingly, quasi-copulas remain quasi-copulas under flipping, while copulas remain copulas under flipping as well as under cyclic shifting.
Czech name
Pretáčacie a otáčacie binárne agregačné funkcie
Czech description
Zavádzame dva typy transformácií nahodných premenných, a na ich základe navrhujeme dva typy transformácií binárnych agregačných funkcií. Zároveň sledujeme správanie sa transformovaných agregačných funkcií so špeciálnymi vlastnosťami, ako sú 1-Lispchitzovskosť či 2-rastúcosť.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
160
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
—
UT code for WoS article
000263661700005
EID of the result in the Scopus database
—