Lipschitz continuity of discrete universal integrals based on copulas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F10%3AA1100ZG9" target="_blank" >RIV/61988987:17610/10:A1100ZG9 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lipschitz continuity of discrete universal integrals based on copulas
Original language description
The stability of discrete universal integrals based on copulas is discussed and examined, both with respect to the norms L1 (Lipschitz stability) and L? (Chebyshev stability). Each of these integrals is shown to be 1-Lipschitz. Exactly the discrete universal integrals based on a copula which is stochastically increasing in its first coordinate turn out to be 1-Chebyshev. A new characterization of stochastically increasing Archimedean copulas is also given.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INT J UNCERTAIN FUZZ
ISSN
0218-4885
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
SG - SINGAPORE
Number of pages
14
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—