Cramer?s Rule for Systems of Fuzzy Relation Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F11%3AA12012L2" target="_blank" >RIV/61988987:17610/11:A12012L2 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Cramer?s Rule for Systems of Fuzzy Relation Equations
Original language description
The aim of this contribution is to apply the theory of bideterminants and to show that solvability of a system of fuzzy relation equations can be investigated with the help of them. We will investigate a subclass of similarity matrices over a semiring reduct of a residuated lattice and show that they are results of elementary transformations of the unit matrix. We will investigate applicability of Cramer's rule to a system of fuzzy relation equations with a similarity matrix of coefficients.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA108270902" target="_blank" >IAA108270902: Theory of Semilinear Lattice-ordered Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 2011 IFSA World Vongress - AFSS INternational Conference
ISBN
978-602-99359-0-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
2221-2226
Publisher name
—
Place of publication
—
Event location
Surabya
Event date
Jun 21, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—