A Formal Theory of Generalized Intermediate Syllogisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F12%3AA1300ZT4" target="_blank" >RIV/61988987:17610/12:A1300ZT4 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Formal Theory of Generalized Intermediate Syllogisms
Original language description
This paper is a continuation of the formal theory of intermediate quantifiers (expressions such as most, few, almost all, a lot of, many, a great deal of, a large part of, a small part of ) introduced by Novák. The theory is a fuzzy-logic formalization of the concept introduced by Peterson in his book. In this paper, we syntactically prove that 105 generalized Aristotle's syllogism introduced in Peterson's book are in our theory valid. At the same time, we also proved that various syllogisms listed there as invalid are invalid also in our the- ory. Therefore, we believe that our theory provides a reasonable mathematical model of the generalized syllogistics.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA108270901" target="_blank" >IAA108270901: Cardinality of Fuzzy Sets and Fuzzy Quantifiers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
186
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
44
Pages from-to
47-80
UT code for WoS article
—
EID of the result in the Scopus database
—