Residuated Lattices as Extensions of Elementary Algebraic Structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F12%3AA13013AC" target="_blank" >RIV/61988987:17610/12:A13013AC - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Residuated Lattices as Extensions of Elementary Algebraic Structures
Original language description
We prove that each residuated commutative l-monoid is a monoid of all residuated endomorphisms of some universal algebra. This result demonstrates that similarly to groups and semigroups, a monoidal operation of a residuated commutative l-monoid is represented by a composition of endomorphisms that are moreover, residuated.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Quantitative Logic and Soft Computing
ISBN
978-981-4401-52-4
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
581-588
Publisher name
World Scientific
Place of publication
Singapore
Event location
Xi'an
Event date
May 13, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—