Many-valued Rough Sets Based on Tied Implications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F14%3AA1501B7T" target="_blank" >RIV/61988987:17610/14:A1501B7T - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Many-valued Rough Sets Based on Tied Implications
Original language description
We investigate a general many-valued rough set theory, based on tied adjointness algebras, from both constructive and axiomatic approaches. The class of tied adjointness algebras constitutes a particularly rich generalization of residuated algebras and deals with implications tied by an integral commutative ordered monoid operation on. We show that this model introduces a flexible extension of rough set theory and covers many fuzzy rough sets models studied in literature.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Rough Sets and Knowledge Technology (LNCS 8818)
ISBN
978-3-319-11739-3
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
27-38
Publisher name
Springer
Place of publication
Switzerland
Event location
Shanghai, China
Event date
Oct 24, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—