All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Many-valued Rough Sets Based on Tied Implications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F14%3AA1501B7T" target="_blank" >RIV/61988987:17610/14:A1501B7T - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Many-valued Rough Sets Based on Tied Implications

  • Original language description

    We investigate a general many-valued rough set theory, based on tied adjointness algebras, from both constructive and axiomatic approaches. The class of tied adjointness algebras constitutes a particularly rich generalization of residuated algebras and deals with implications tied by an integral commutative ordered monoid operation on. We show that this model introduces a flexible extension of rough set theory and covers many fuzzy rough sets models studied in literature.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Rough Sets and Knowledge Technology (LNCS 8818)

  • ISBN

    978-3-319-11739-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    27-38

  • Publisher name

    Springer

  • Place of publication

    Switzerland

  • Event location

    Shanghai, China

  • Event date

    Oct 24, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article