On the number of orbits of the homeomorphism group of solenoidal spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA150197J" target="_blank" >RIV/61988987:17610/15:A150197J - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the number of orbits of the homeomorphism group of solenoidal spaces
Original language description
A continuum X is called solenoidal if it is circle-like and nonplanar. X is 1/n-homogeneous if the action of its homeomorphism group on X has exactly n orbits; i.e. there are exactly n types of points in X. Recently Jim'enez-Her'andez, Minc and Pellicer-Covarrubias [Topology and its Applications, 160 (2013) 930--936] constructed a family of 1/n-homogeneous solenoidal continua, for every n>2. Modifying the spaces obtained by them, as well as an earlier construction of the author for n=2, for every n>2we construct two different uncountable families of arcless 1/n-homogeneous solenoidal continua. We also show that there is an uncountable family of countably nonhomogeneous solenoidal continua. With respect to the degree of homogeneity, in the realm of solenoidal continua containing pseudoarcs, our examples complete the gap between homogeneous solenoids of pseudoarcs and uncountably nonhomogeneous pseudosolenoids. A number of questions related to the study is raised.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
TOPOL APPL
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
182
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
98-106
UT code for WoS article
—
EID of the result in the Scopus database
—