Directional monotonicity of fusion functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1501B64" target="_blank" >RIV/61988987:17610/15:A1501B64 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Directional monotonicity of fusion functions
Original language description
In the paper fusion functions, i.e., arbitrary mappings from [0; 1]^n into [0; 1] are considered. As a generalization of the standard monotonicity and recently introduced weak monotonicity, the directional monotonicity of fusion functions is defined andstudied. For distinguished fusion functions the sets of all directions in which they are increasing are determined. Moreover, in the paper the directional monotonicity of piece-wise linear fusion functions is completely characterized. These results cover, among others, weighted arithmetic means, OWA operators, the Choquet, Sugeno and Shilkret integrals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
EUR J OPER RES
ISSN
0377-2217
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
244
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
300-308
UT code for WoS article
—
EID of the result in the Scopus database
—