On indecomposability in chaotic attractors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1601A9Z" target="_blank" >RIV/61988987:17610/15:A1601A9Z - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On indecomposability in chaotic attractors
Original language description
We exhibit a Li-Yorke chaotic interval map F such that the corresponding inverse limit does not contain an indecomposable subcontinuum. Our result contrasts with the known property of interval maps: if F has positive entropy then the inverse limit spacecontains an indecomposable subcontinuum. From a result of Barge and Martin it follows that our space is a chaotic attractor of a planar homeomorphism. In addition, F can be modified to give a cofrontier that is a chaotic attractor of a planar homeomorphism but contains no indecomposable subcontinuum. Finally, F can be modified, without removing or introducing new periods, to give a chaotic zero entropy interval map, such that the corresponding inverse limit contains the pseudoarc.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
P AM MATH SOC
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
143
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
3659-3670
UT code for WoS article
000357042200045
EID of the result in the Scopus database
2-s2.0-84929431091