On regression methods based on linguistic descriptions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1601E5W" target="_blank" >RIV/61988987:17610/15:A1601E5W - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On regression methods based on linguistic descriptions
Original language description
We propose linguistic associations mining as a technique to create the models of the multivariate time series. We define various linguistic evaluative expressions on the range of the values of the time series and variables derived from them. We mine linguistic associations then and interpret them as IF-THEN rules in the framework of Perception based Logic Deduction (PbLD). The mined rules provide the linguistic descriptions of various relationships between the time series. We showcase our suggested methodology in a macroeconomic example where we compare our approach with Dynamic Stochastic General Equilibrium (DSGE) model, that is frequently used in the macroeconomic modeling.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IEEE International Fuzzy Systems Conference Proceedings
ISBN
978-1-4673-7428-6
ISSN
1544-5615
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
IEEE
Place of publication
Istanbul
Event location
Istanbul
Event date
Aug 2, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000370288300241