On the relationship between modular functions and copulas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1601E6E" target="_blank" >RIV/61988987:17610/15:A1601E6E - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the relationship between modular functions and copulas
Original language description
Copulas are nothing else but supermodular functions with absorbing element 0 and neutral element 1. Although a copula C cannot be modular on the unit square itself, it is effectively so on every rectangle with zero C-volume. In this paper, we show that an appropriate modular function on the unit square can be transformed into a copula by performing a simple truncation operation (either from below or above to ensure the compatibility with the Fréchet-Hoeffding bounds). Modular functions on the unit square admit an additive representation in terms of two univariate functions. We specifically focus on cases where these univariate functions are sections (horizontal, vertical, diagonal) of a given copula. Ample illustrations are provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
268
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
110-126
UT code for WoS article
—
EID of the result in the Scopus database
—