Non-commutative first-order EQ-logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701BNM" target="_blank" >RIV/61988987:17610/16:A1701BNM - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Non-commutative first-order EQ-logics
Original language description
Logics based on EQ-algebras are called EQ-logics and they can be considered as special kind of fuzzy logics. After developing propositional and higher-order ones, we address in this contribution the predicate first-order EQ-logic. First, we overview some basic properties of EQ-algebras and the basic propositional EQlogic. Analysis of necessary properties of the fuzzy equality that is in predicate EQ-logic considered not only between truth values (the equivalence) but also between objects revealed that we cannot consider the fuzzy equality in full generality without means enabling us to deal with the classical (crisp) equality. This is possible using the delta-connective. Therefore, we pay a special attention to prelinear EQdelta-algebras and develop the corresponding propositional EQdelta-logic. Finally, we in detail introduce syntax and semantics of the first-order EQ-logics and prove various theorems characterizing its properties including completeness.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
292
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
27
Pages from-to
215-241
UT code for WoS article
—
EID of the result in the Scopus database
—