Graded generalized hexagon in fuzzy natural logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701FT6" target="_blank" >RIV/61988987:17610/16:A1701FT6 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Graded generalized hexagon in fuzzy natural logic
Original language description
In our previous papers, we formally analyzed the generalized Aristotle's square of opposition using tools of fuzzy natural logic. Namely, we introduced general definitions of selected intermediate quantifiers, constructed a generalized square of opposition consisting of them and syntactically analyzed the emerged properties. The main goal of this paper is to extend the generalized square of opposition to graded generalized hexagon.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. Information Processing and Management under Uncertainty in Knowledge-Based Systems Part II (Communications in Computer and Information Science 611)
ISBN
978-3-319-40580-3
ISSN
1865-0929
e-ISSN
—
Number of pages
12
Pages from-to
36-47
Publisher name
Springer
Place of publication
Switzerland
Event location
Eindhoven
Event date
Jun 20, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—