On the Satisfaction of Moser-Navara Axioms for Fuzzy Inference Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701FZN" target="_blank" >RIV/61988987:17610/16:A1701FZN - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Satisfaction of Moser-Navara Axioms for Fuzzy Inference Systems
Original language description
In [1], B. Moser and M. Navara defined three axioms for fuzzy inference systems and showed, that usually neither very popular Mamdani-Assilian nor logically motivated implicative fuzzy systems, do satisfy them simultaneously. Therefore, the authors introduced so-called conditionally firing rules and proved, that under very mild conditions, all three axioms may be satisfied simultaneously. However, the advantageous composition, which is directly related to the inference, is the direct image (related to CRI) when dealing with the implicative interpretation of fuzzy rules, and the subdirect image (related to BKS) when dealing with Mamdani-Assilian interpretation of fuzzy rules, not vice-versa. This article aims directly at this point and investigates the satisfaction of Moser-Navara axioms by the preferable combinations of rule interpretations and inference mechanisms.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
FUZZ-IEEE
ISBN
978-1-5090-0625-0
ISSN
1098-7584
e-ISSN
—
Number of pages
8
Pages from-to
308-315
Publisher name
IEEE
Place of publication
Vancouver
Event location
Vancouver, Canada
Event date
Jan 1, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000392150700043