Mining information from time series in the form of sentences of natural language
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701HQL" target="_blank" >RIV/61988987:17610/16:A1701HQL - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mining information from time series in the form of sentences of natural language
Original language description
The goal of this paper is to provide a more detailed explanation of the principles how special formulas that characterize properties of trend of time series can be formed and how they are interpreted. Then we show how these formulas can be used in a tectogrammatical tree that construes special sentences of natural language, using which information on behavior of time series is provided. We also outline the principles of mining this information. The last part is devoted to application of the theory of intermediate quantifiers to mining summarized information on time series also in sentences of natural language.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
11
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
192-209
UT code for WoS article
—
EID of the result in the Scopus database
—