Periodic points and transitivity on dendrites
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801GK0" target="_blank" >RIV/61988987:17610/17:A1801GK0 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/etds.2015.137" target="_blank" >http://dx.doi.org/10.1017/etds.2015.137</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/etds.2015.137" target="_blank" >10.1017/etds.2015.137</a>
Alternative languages
Result language
angličtina
Original language name
Periodic points and transitivity on dendrites
Original language description
We study relations between transitivity, mixing and periodic points on dendrites. We prove that, when there is a point with dense orbit which is a cutpoint, periodic points are dense and there is a terminal periodic decomposition. We also show that it is possible that all periodic points except one (and points with dense orbit) are contained in the (dense) set of endpoints. It is also possible that a dynamical system is transitive but there is a unique periodic point which, in fact, is the unique fixed point. We also prove that on almost meshed continua (a class of continua containing topological graphs and dendrites with closed or countable set of endpoints), periodic points are dense if and only if they are dense for the map induced on the hyperspace of all non-empty compact subsets.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ERGOD THEOR DYN SYST
ISSN
0143-3857
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
2017-2033
UT code for WoS article
000409428600001
EID of the result in the Scopus database
—