On generalized quotient MI-groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801I3N" target="_blank" >RIV/61988987:17610/17:A1801I3N - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2017.02.011" target="_blank" >http://dx.doi.org/10.1016/j.fss.2017.02.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.02.011" target="_blank" >10.1016/j.fss.2017.02.011</a>
Alternative languages
Result language
angličtina
Original language name
On generalized quotient MI-groups
Original language description
Many identities group (MI-group, for short) is an algebraic structure generalizing the group structure, where an involutive anti-automorphism satisfying certain properties is used instead of the standard group inversion. The concept of MI-group, in a more general form than in this article, has been introduced by Holčapek and Štěpnička in the paper 'MI-algebras: A new frame work for arithmetics of (extensional) fuzzy numbers' to describe properties of different approaches to arithmetics of vaguely specified quantities (e.g., stochastic or fuzzy quantities) in a unified way. This article is a continuation of the effort to develop the theory of MI-groups and is focused on a generalization of the construction of quotient MI-groups induced by so-called normal full MI-subgroups which has been introduced by Holčapek et al. recently in the paper 'Quotient MI-groups'. Besides a more general definition of quotient MI-groups, we prove three isomorphism theorems for MI-groups in this new framework.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
326
Issue of the periodical within the volume
NOV 1 2017
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
3-23
UT code for WoS article
000412264700002
EID of the result in the Scopus database
—