Multivariate Fuzzy Transform of Complex-Valued Functions Determined by Monomial Basis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801LVH" target="_blank" >RIV/61988987:17610/17:A1801LVH - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00500-017-2658-8" target="_blank" >http://dx.doi.org/10.1007/s00500-017-2658-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-017-2658-8" target="_blank" >10.1007/s00500-017-2658-8</a>
Alternative languages
Result language
angličtina
Original language name
Multivariate Fuzzy Transform of Complex-Valued Functions Determined by Monomial Basis
Original language description
In this paper, we introduce the multivariate fuzzy transform of higher degree of complex-valued functions. Apart from the orthogonal bases of multivariate complex polynomials of weighted Hilbert spaces that are derived by the Gram-Schmidt orthogonalization process, which can be problematic and imprecise in certain cases, we propose to compute the multivariate fuzzy transform components using a simple matrix calculus with the help of the monomial bases. By this novel approach, we derive two types of upper bound of the approximation error both of multivariate complex-valued functions and of their partial derivatives (the latter by the multivariate higher degree fuzzy transform). The results are demonstrated on examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
13
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
3641-3658
UT code for WoS article
000403472700013
EID of the result in the Scopus database
—