Aggregation functions on bounded lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801MXY" target="_blank" >RIV/61988987:17610/17:A1801MXY - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/03081079.2017.1291634" target="_blank" >http://dx.doi.org/10.1080/03081079.2017.1291634</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081079.2017.1291634" target="_blank" >10.1080/03081079.2017.1291634</a>
Alternative languages
Result language
angličtina
Original language name
Aggregation functions on bounded lattices
Original language description
In this paper, we show that the set of all n-ary aggregation functions on a complete lattice L is a complete lattice and we study some properties of this lattice. We generate aggregation functions from monotone functions. We introduce the concept of internal product of aggregation functions. We give some examples of aggregation functions on bounded lattices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INT J GEN SYST
ISSN
0308-1079
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
37-51
UT code for WoS article
000396574300003
EID of the result in the Scopus database
—