Linguistic Characterization of Natural Data by Applying Intermediate Quantifiers on Fuzzy Association Rules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801RAV" target="_blank" >RIV/61988987:17610/17:A1801RAV - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Linguistic Characterization of Natural Data by Applying Intermediate Quantifiers on Fuzzy Association Rules
Original language description
The objective of this paper is to apply fuzzy natural logic together with the FuzzyGUHA method for analysis and linguistic characterization of scientfic data. FuzzyGUHA is a tool for extracting linguistic association rules from data. Obtained associationsare IF-THEN rules composed of evaluative linguistic expressions, which allowthe quantities to be characterized with vague linguistic terms such as very small,big, medium etc. Originally, fuzzy GUHA provides several numerical indices ofrule quality, which may not be easily understandable for domain experts that are notfamiliar with GUHA association rules. Therefore, we show in this paper that the theoryof intermediate quantfiers (a constituent of fuzzy natural logic) can be applied to theresults in an automatic manner in order to obtain natural linguistic summarization.We also present an idea of how the theory of generalized Aristotles's syllogisms can beused for a detailed data analysis
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA16-19170S" target="_blank" >GA16-19170S: Fuzzy Partial Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Pardubice, Czech Republic September 17-20, 2017 Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
ISBN
978-80-7464-932-5
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
115-126
Publisher name
University of Ostrava
Place of publication
University of Ostrava
Event location
Pardubice
Event date
Sep 17, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000418391500014