All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Visual Training Set Generation Framework

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1901OX9" target="_blank" >RIV/61988987:17610/17:A1901OX9 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-59147-6_63" target="_blank" >http://dx.doi.org/10.1007/978-3-319-59147-6_63</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-59147-6_63" target="_blank" >10.1007/978-3-319-59147-6_63</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Visual Training Set Generation Framework

  • Original language description

    Performance of trained computer vision algorithms is largely dependent on amounts of data, on which it is trained. Creating large labeled datasets is very expensive, and therefore many researchers use synthetically generated images with automatic annotations. To this purpose we have created a general framework, which allows researchers to generate practically infinite amount of images from a set of 3D models, textures and material settings. We leverage Voxel Cone Tracing technology implemented by NVIDIA to render photorealistic images in realtime without any kind of precomputation. We have build this framework with two use cases in mind: (i) for real world applications, where a database with synthetically generated images could compensate for small or non existent datasets, and (ii) for empirical testing of theoretical ideas by creating training sets with known inner structure.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Computational Intelligence

  • ISBN

    978-3-319-59146-9

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    747-758

  • Publisher name

    Springer Verlag

  • Place of publication

    Cadiz

  • Event location

    Cadiz

  • Event date

    Jun 14, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000443108700063