Towards Visual Training Set Generation Framework
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1901OX9" target="_blank" >RIV/61988987:17610/17:A1901OX9 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-59147-6_63" target="_blank" >http://dx.doi.org/10.1007/978-3-319-59147-6_63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59147-6_63" target="_blank" >10.1007/978-3-319-59147-6_63</a>
Alternative languages
Result language
angličtina
Original language name
Towards Visual Training Set Generation Framework
Original language description
Performance of trained computer vision algorithms is largely dependent on amounts of data, on which it is trained. Creating large labeled datasets is very expensive, and therefore many researchers use synthetically generated images with automatic annotations. To this purpose we have created a general framework, which allows researchers to generate practically infinite amount of images from a set of 3D models, textures and material settings. We leverage Voxel Cone Tracing technology implemented by NVIDIA to render photorealistic images in realtime without any kind of precomputation. We have build this framework with two use cases in mind: (i) for real world applications, where a database with synthetically generated images could compensate for small or non existent datasets, and (ii) for empirical testing of theoretical ideas by creating training sets with known inner structure.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Computational Intelligence
ISBN
978-3-319-59146-9
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
747-758
Publisher name
Springer Verlag
Place of publication
Cadiz
Event location
Cadiz
Event date
Jun 14, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000443108700063