Axiomatic of lattice-valued F-transform
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901KDY" target="_blank" >RIV/61988987:17610/18:A1901KDY - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2017.08.008" target="_blank" >http://dx.doi.org/10.1016/j.fss.2017.08.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.08.008" target="_blank" >10.1016/j.fss.2017.08.008</a>
Alternative languages
Result language
angličtina
Original language name
Axiomatic of lattice-valued F-transform
Original language description
Axioms for upper and lower fuzzy transformation systems are introduced and it is proved, that a transformation function satisfies axioms for upper (or lower, respectively) transformation systems if and only if it is an upper (or lower, respectively) F-transform. Categories of upper (lower,respectively) transformation systems are introduced and it is proved that both categories are isomorphic to the category of spaces with fuzzy partitions. We prove that lower and upper F-transforms preserve extensional fuzzy sets associated with spaces with fuzzy partitions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
1872-6801
Volume of the periodical
342
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
53-66
UT code for WoS article
000432350400003
EID of the result in the Scopus database
2-s2.0-85028753310