Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901VCS" target="_blank" >RIV/61988987:17610/18:A1901VCS - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TFUZZ.2017.2686372" target="_blank" >http://dx.doi.org/10.1109/TFUZZ.2017.2686372</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2017.2686372" target="_blank" >10.1109/TFUZZ.2017.2686372</a>
Alternative languages
Result language
angličtina
Original language name
Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory
Original language description
Admissible orders have brought the structure of chains in the framework of interval-valued fuzzy sets. However, a deeper study of functions monotone with respect to admissible orders is still missing in the literature. In this work, we consider the construction of negations and strong negations on intervals with respect to admissible orders, in particular, for the Xu and Yager and lexicographical orders, as well as for those based on K-alpha operators. We introduce and discuss an approach to the construction of strong negations on intervals with respect to K-alpha,(beta) orders based on an arbitrary couple of strong negations defined over the standard real interval [0, 1]. The introduced strong negations have a deep impact on all fields exploiting fuzzy methods dealing with intervals, allowing to introduce complements, dual aggregations, implications, entropies, etc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE T FUZZY SYST
ISSN
1063-6706
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
556-568
UT code for WoS article
000428613500013
EID of the result in the Scopus database
2-s2.0-85029417505