All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901VCS" target="_blank" >RIV/61988987:17610/18:A1901VCS - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/TFUZZ.2017.2686372" target="_blank" >http://dx.doi.org/10.1109/TFUZZ.2017.2686372</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TFUZZ.2017.2686372" target="_blank" >10.1109/TFUZZ.2017.2686372</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory

  • Original language description

    Admissible orders have brought the structure of chains in the framework of interval-valued fuzzy sets. However, a deeper study of functions monotone with respect to admissible orders is still missing in the literature. In this work, we consider the construction of negations and strong negations on intervals with respect to admissible orders, in particular, for the Xu and Yager and lexicographical orders, as well as for those based on K-alpha operators. We introduce and discuss an approach to the construction of strong negations on intervals with respect to K-alpha,(beta) orders based on an arbitrary couple of strong negations defined over the standard real interval [0, 1]. The introduced strong negations have a deep impact on all fields exploiting fuzzy methods dealing with intervals, allowing to introduce complements, dual aggregations, implications, entropies, etc.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE T FUZZY SYST

  • ISSN

    1063-6706

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    556-568

  • UT code for WoS article

    000428613500013

  • EID of the result in the Scopus database

    2-s2.0-85029417505