All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

L-fuzzy relational mathematical morphology based on adjoint triples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA2001VHP" target="_blank" >RIV/61988987:17610/19:A2001VHP - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S002002551830728X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S002002551830728X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2018.09.028" target="_blank" >10.1016/j.ins.2018.09.028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    L-fuzzy relational mathematical morphology based on adjoint triples

  • Original language description

    We propose an alternative to the standard structure of L-fuzzy Mathematical Morphology (MM) by, on the one hand, considering L-fuzzy relations as structuring elementsand, on the other hand, by using adjoint triples to handle membership values. Those modifications lead to a framework based on set-theoretical operations where we can prove a representation theorem for algebraic morphological erosions and dilations. In addition, we also present some new results concerning duality and transformation invariance.Concerning duality, we show that duality and adjointness can coexist in this L-fuzzy relational MM; concerning transformation invariance, we show sufficient conditionsto guarantee the invariance of morphological operators under arbitrary transformations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-06915S" target="_blank" >GA18-06915S: New approaches to aggregation operators in analysis and processing of data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Information Sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Volume of the periodical

    474

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    15

  • Pages from-to

    75-89

  • UT code for WoS article

    000449567200005

  • EID of the result in the Scopus database

    2-s2.0-85054071888