Fuzzy preprocessing for semi-supervised image classification in modern industry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA2001ZSQ" target="_blank" >RIV/61988987:17610/19:A2001ZSQ - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fuzzy preprocessing for semi-supervised image classification in modern industry
Original language description
We are focusing on image classification in industrial processing taking into account the most problematic issue of the processing: the lack of labeled data. Here, we are considering three datasets: the first one is an unsorted collection of all types of manufactured products and includes 100 images per class. The second one consists of products sorted into particular classes by a specialized employee and includes only ten images per class. The last one includes a massive volume of labeled images, but it is used only for the proposal validation. As the configuration is challenging for neural networks, we propose to use Image Represented by a Fuzzy Function in order to enrich original image information. We solve the task using various autoencoder architectures and prove that such the proposal increases the autoencoders success rate.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
15th International Work-Conference on Artificial Neural Networks
ISBN
978-3-030-20517-1
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
3-13
Publisher name
Springer
Place of publication
Cham
Event location
Gran Canaria
Event date
Jun 12, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—