All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

All minimal Cantor systems are slow

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA2001ZXJ" target="_blank" >RIV/61988987:17610/19:A2001ZXJ - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1112/blms.12275" target="_blank" >https://doi.org/10.1112/blms.12275</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12275" target="_blank" >10.1112/blms.12275</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    All minimal Cantor systems are slow

  • Original language description

    We show that every (invertible or noninvertible) minimal Cantor system embeds in the real line with vanishing derivative everywhere. We also study relations between local shrinking and periodic points.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    1469-2120

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    937-944

  • UT code for WoS article

    000477143000001

  • EID of the result in the Scopus database

    2-s2.0-85069865297