All minimal Cantor systems are slow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA2001ZXJ" target="_blank" >RIV/61988987:17610/19:A2001ZXJ - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1112/blms.12275" target="_blank" >https://doi.org/10.1112/blms.12275</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.12275" target="_blank" >10.1112/blms.12275</a>
Alternative languages
Result language
angličtina
Original language name
All minimal Cantor systems are slow
Original language description
We show that every (invertible or noninvertible) minimal Cantor system embeds in the real line with vanishing derivative everywhere. We also study relations between local shrinking and periodic points.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
1469-2120
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
937-944
UT code for WoS article
000477143000001
EID of the result in the Scopus database
2-s2.0-85069865297