All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pointwise directional increasingness and geometric interpretation of directionally monotone functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20020W4" target="_blank" >RIV/61988987:17610/19:A20020W4 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0020025519305298" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025519305298</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2019.06.002" target="_blank" >10.1016/j.ins.2019.06.002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pointwise directional increasingness and geometric interpretation of directionally monotone functions

  • Original language description

    The relaxation of monotonicity requirements is a trend in the theory of aggregation functions. In the recent literature, we can find several relaxed forms of monotonicity, such as weak, directional, cone, ordered directional and strengthened directional monotonicity. All these forms of monotonicity are global properties in the sense that they are imposed for all the points in the domain of a function. In this work, we introduce a local notion of monotonicity called pointwise directional monotonicity, or directional monotonicity at a point. Based on this concept, we characterize all the previously defined notions of monotonicity and, in the final part of the paper, we present some geometric aspects of the global weaker forms of monotonicity, stressing their relations and singularities.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INFORM SCIENCES

  • ISSN

    0020-0255

  • e-ISSN

    1872-6291

  • Volume of the periodical

    501

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    236-247

  • UT code for WoS article

    000480663900015

  • EID of the result in the Scopus database

    2-s2.0-85067045005