Pointwise directional increasingness and geometric interpretation of directionally monotone functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20020W4" target="_blank" >RIV/61988987:17610/19:A20020W4 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0020025519305298" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025519305298</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2019.06.002" target="_blank" >10.1016/j.ins.2019.06.002</a>
Alternative languages
Result language
angličtina
Original language name
Pointwise directional increasingness and geometric interpretation of directionally monotone functions
Original language description
The relaxation of monotonicity requirements is a trend in the theory of aggregation functions. In the recent literature, we can find several relaxed forms of monotonicity, such as weak, directional, cone, ordered directional and strengthened directional monotonicity. All these forms of monotonicity are global properties in the sense that they are imposed for all the points in the domain of a function. In this work, we introduce a local notion of monotonicity called pointwise directional monotonicity, or directional monotonicity at a point. Based on this concept, we characterize all the previously defined notions of monotonicity and, in the final part of the paper, we present some geometric aspects of the global weaker forms of monotonicity, stressing their relations and singularities.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INFORM SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Volume of the periodical
501
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
236-247
UT code for WoS article
000480663900015
EID of the result in the Scopus database
2-s2.0-85067045005