YOLO-ASC: You Only Look Once And See Contours
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21021UC" target="_blank" >RIV/61988987:17610/20:A21021UC - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9207223" target="_blank" >https://ieeexplore.ieee.org/document/9207223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN48605.2020.9207223" target="_blank" >10.1109/IJCNN48605.2020.9207223</a>
Alternative languages
Result language
angličtina
Original language name
YOLO-ASC: You Only Look Once And See Contours
Original language description
YOLO is a useful, one-stage tool for object detection and classification. In this paper, we consider the application of grocery product detection. The grocery stores have a significant amount of product classes, so it is beneficial to postpone the classification into a second, specialized neural network with a higher capacity. Extracting bounding boxes for a classification network is not precise enough as the detected area includes redundant information about the background. We propose YOLO-ASC, which, for rectangular-based objects, detects bounding boxes together with object contour using a quadrangular. This approach allows detecting objects more accurately and without the background. For the quadrangular detection functionality, YOLO-ASC shares the feature maps that are already present in the network, and therefore its inference time is almost identical to the original YOLO. YOLO reaches high detection precision by using YOLO apriori knowledge, anchors extracted from data. In this work, we present two experiments where we demonstrate that YOLO-ASC training converges faster due to the symbiosis between the bounding box detection and quadrangular detection. Finally, we propose a tool for generating synthetic datasets with quadrangular labels that is helpful for transfer learning.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2020 International Joint Conference on Neural Networks (IJCNN)
ISBN
978-1-7281-6926-2
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
IEEE
Place of publication
USA
Event location
Glasgow , United Kingdom
Event date
Jul 19, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—