All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

KLN: a deep neural network architecture for keypoint localization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21024FM" target="_blank" >RIV/61988987:17610/20:A21024FM - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9204211" target="_blank" >https://ieeexplore.ieee.org/document/9204211</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/DSMP47368.2020.9204211" target="_blank" >10.1109/DSMP47368.2020.9204211</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    KLN: a deep neural network architecture for keypoint localization

  • Original language description

    Pixel-precision level localization of keypoints is an essential step for stitching panoramic images as these keypoints are matching, and their locations are used for computing stitching transformation. We recall the main standard computer vision techniques for keypoint localization and focus on the precise localization. Based on the SIFT technique, we design a neural network architecture containing an encoder, a latent representation handler, and a decoder. In contrast to domain-agnostic neural network architectures, the developed encoder reflects the scale-space construction as well as the difference of Gaussians estimation used in SIFT. In the benchmark, we show that our architecture has a higher number of keypoints localized with pixel precision considering flips, intensity changes, and blurrings than other standard and neural network-based approaches.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020

  • ISBN

    978-1-7281-3215-0

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    Lvov, Ukraina

  • Event location

    Lvov, Ukraina

  • Event date

    Aug 21, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article