Topology in the Alternative Set Theory and Rough Sets via Fuzzy Type Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21024TV" target="_blank" >RIV/61988987:17610/20:A21024TV - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/3/432" target="_blank" >https://www.mdpi.com/2227-7390/8/3/432</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8030432" target="_blank" >10.3390/math8030432</a>
Alternative languages
Result language
angličtina
Original language name
Topology in the Alternative Set Theory and Rough Sets via Fuzzy Type Theory
Original language description
In this paper, we will visit Rough Set Theory and the Alternative Set Theory (AST) and elaborate a few selected concepts of them using the means of higher-order fuzzy logic (this is usually called Fuzzy Type Theory). We will show that the basic notions of rough set theory have already been included in AST. Using fuzzy type theory, we generalize basic concepts of rough set theory and the topological concepts of AST to become the concepts of the fuzzy set theory. We will give mostly syntactic proofs of the main properties and relations among all the considered concepts, thus showing that they are universally valid.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
432-453
UT code for WoS article
000524085900131
EID of the result in the Scopus database
2-s2.0-85082421487