All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inhomogeneities in chainable continua

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA22024TP" target="_blank" >RIV/61988987:17610/21:A22024TP - isvavai.cz</a>

  • Result on the web

    <a href="https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/online/113766/inhomogeneities-in-chainable-continua" target="_blank" >https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/online/113766/inhomogeneities-in-chainable-continua</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inhomogeneities in chainable continua

  • Original language description

    We study a class of chainable continua which contains, among others, all inverse limit spaces generated by a single interval bonding map which is piecewise monotone and locally eventually onto. Such spaces are realized as attractors of non-hyperbolic surface homeomorphisms. Using dynamical properties of the bonding map, we give conditions for existence of endpoints, characterize the set of local inhomogeneities, and determine when it consists only of endpoints. As a side product we also obtain a characterization of arcs as inverse limits for piecewise monotone bonding maps, which is interesting in its own right.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FUND MATH

  • ISSN

    0016-2736

  • e-ISSN

  • Volume of the periodical

    254

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    30

  • Pages from-to

    69-98

  • UT code for WoS article

    000637944700004

  • EID of the result in the Scopus database

    2-s2.0-85105679415