Comparative analysis of inductive density clustering algorithms MeanShift and DBSCAN
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA22026TY" target="_blank" >RIV/61988987:17610/21:A22026TY - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-80531-9_21" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-80531-9_21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-80531-9_21" target="_blank" >10.1007/978-3-030-80531-9_21</a>
Alternative languages
Result language
angličtina
Original language name
Comparative analysis of inductive density clustering algorithms MeanShift and DBSCAN
Original language description
The article presents an inductive model of objective clustering based on the MeanShift clustering technique. The algorithm for breaking an assortment of original data into two evenly powerful subsets is employed. The balance criterion is handled as an external criterion. To test the proposed model's functioning, the “Jain” and “Flame” data sets from the Computing School of the East Finnish University were employed. The inductive DBSCAN algorithm was adopted to match the preliminary outcomes. Based on the simulation proceeds, the ways for further improvement of the proposed model are arranged to increase the examined data's clustering objectivity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Artificial Systems for Power Engineering. AIPE 2020. Advances in Intelligent Systems and Computing, vol 1403
ISBN
978-3-030-80530-2
ISSN
2194-5357
e-ISSN
—
Number of pages
11
Pages from-to
232-242
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Moskva, Rusko
Event date
Dec 25, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—