All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparative analysis of inductive density clustering algorithms MeanShift and DBSCAN

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA22026TY" target="_blank" >RIV/61988987:17610/21:A22026TY - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-80531-9_21" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-80531-9_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-80531-9_21" target="_blank" >10.1007/978-3-030-80531-9_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparative analysis of inductive density clustering algorithms MeanShift and DBSCAN

  • Original language description

    The article presents an inductive model of objective clustering based on the MeanShift clustering technique. The algorithm for breaking an assortment of original data into two evenly powerful subsets is employed. The balance criterion is handled as an external criterion. To test the proposed model's functioning, the “Jain” and “Flame” data sets from the Computing School of the East Finnish University were employed. The inductive DBSCAN algorithm was adopted to match the preliminary outcomes. Based on the simulation proceeds, the ways for further improvement of the proposed model are arranged to increase the examined data's clustering objectivity.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Artificial Systems for Power Engineering. AIPE 2020. Advances in Intelligent Systems and Computing, vol 1403

  • ISBN

    978-3-030-80530-2

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    232-242

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Moskva, Rusko

  • Event date

    Dec 25, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article