Semicopula based integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2202AB0" target="_blank" >RIV/61988987:17610/21:A2202AB0 - isvavai.cz</a>
Result on the web
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000637966800008" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000637966800008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2021.01.004" target="_blank" >10.1016/j.fss.2021.01.004</a>
Alternative languages
Result language
angličtina
Original language name
Semicopula based integrals
Original language description
We define the notion of weak universal integral based on a semicopula, and introduce and discuss two particular classes of weak universal integrals based on semicopulas, which generalize the well-known Sugeno and Shilkret integrals. In special cases, when the considered semicopulas are bounded from above by the Łukasiewicz t-norm, all introduced integrals reduce to the corresponding smallest semicopula based universal integrals. Remarkably, when the product semicopula is considered, the proposed integrals generalizing the Shilkret integral belong to the class of aggregation functions, which is not the case of the minimum semicopula when the introduced integrals generalize the Sugeno integral.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
412
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
106-119
UT code for WoS article
000637966800008
EID of the result in the Scopus database
—