Nonlinear random forest classification, a copula-based approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2202ABG" target="_blank" >RIV/61988987:17610/21:A2202ABG - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2076-3417/11/15/7140" target="_blank" >https://www.mdpi.com/2076-3417/11/15/7140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app11157140" target="_blank" >10.3390/app11157140</a>
Alternative languages
Result language
angličtina
Original language name
Nonlinear random forest classification, a copula-based approach
Original language description
In this work, we use a copula-based approach to select the most important features for a random forest classification. Based on associated copulas between these features, we carry out this feature selection. We then embed the selected features to a random forest algorithm to classify a label-valued outcome. Our algorithm enables us to select the most relevant features when the features are not necessarily connected by a linear function; also, we can stop the classification when we reach the desired level of accuracy. We apply this method on a simulation study as well as a real dataset of COVID-19 and for a diabetes dataset.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Sciences
ISSN
2076-3417
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
15
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000681844800001
EID of the result in the Scopus database
—