All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the construction of uninorms on bounded lattices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2402MEG" target="_blank" >RIV/61988987:17610/21:A2402MEG - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0165011420300531" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011420300531</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2020.02.007" target="_blank" >10.1016/j.fss.2020.02.007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the construction of uninorms on bounded lattices

  • Original language description

    Recently, construction methods for uninorms on bounded lattices have been studied widely. In this paper, we present two different methods for constructing uninorms on an appropriate bounded lattice with a fixed neutral element e, which is different from the top and bottom elements by using the knowledge of the existence of triangular norms and triangular conorms on bounded lattices. By using these constructions, we obtain idempotent uninorms on an appropriate bounded lattice. Also, we investigate the relation between introduced methods and some other approaches.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FUZZY SET SYST

  • ISSN

    0165-0114

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    1.4.2021

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    65-85

  • UT code for WoS article

    000616219000006

  • EID of the result in the Scopus database

    2-s2.0-85079837806