All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph Neural Networks for Scheduling of SMT Solvers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2402MER" target="_blank" >RIV/61988987:17610/21:A2402MER - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/21:00353755

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9643296" target="_blank" >https://ieeexplore.ieee.org/document/9643296</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICTAI52525.2021.00072" target="_blank" >10.1109/ICTAI52525.2021.00072</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph Neural Networks for Scheduling of SMT Solvers

  • Original language description

    This paper develops an approach to the scheduling of solvers in the domain of Satisfiability Modulo Theories (SMT) using a Graph Neural Network (GNN). In contrast to related methods, GNNs do not require manual feature design as they enable discovering relevant features in the raw data. We train them to predict the effectivity of individual solvers on a given problem. Rather than choosing only one solver with the best prediction, we schedule the solvers by ordering them according to the predicted runtime and dividing the overall runtime into all solvers uniformly. We compare our approach to several baselines. In the selected benchmarks, we show a substantial improvement over these baselines in terms of the number of solved problems and overall solving time.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021)

  • ISBN

    978-1-6654-0898-1

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    447-451

  • Publisher name

    IEEE

  • Place of publication

    Los Alamitos, USA

  • Event location

    Online

  • Event date

    Nov 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000747482300064