Periodic points and shadowing property for generic Lebesgue measure preserving interval maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA23029AK" target="_blank" >RIV/61988987:17610/22:A23029AK - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1361-6544/ac62df/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6544/ac62df/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/ac62df" target="_blank" >10.1088/1361-6544/ac62df</a>
Alternative languages
Result language
angličtina
Original language name
Periodic points and shadowing property for generic Lebesgue measure preserving interval maps
Original language description
In this article we study dynamical behaviour of generic Lebesgue measure- preserving interval maps. We show that for each k greater or equal than 1 the set of periodic points of period at least k is a Cantor set of Hausdorff dimension zero and of upper box dimension one. Moreover, we obtain analogous results also in the context of generic Lebesgue measure-preserving circle maps. Furthermore, building on the former results, we show that there is a dense collection of transitive Lebesgue measure-preserving interval maps whose periodic points have full Lebesgue measure and whose periodic points of period k have positive measure for each k greater of equal than 1. Finally, we show that the generic continuous maps of the inter- val which preserve the Lebesgue measure satisfy the shadowing and periodic shadowing property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
09517715
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
April
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
2534-2557
UT code for WoS article
000788766400001
EID of the result in the Scopus database
2-s2.0-85129990581