Rough Semirings-valued Fuzzy Sets with Application
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302F3S" target="_blank" >RIV/61988987:17610/22:A2302F3S - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/13/2274" target="_blank" >https://www.mdpi.com/2227-7390/10/13/2274</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10132274" target="_blank" >10.3390/math10132274</a>
Alternative languages
Result language
angličtina
Original language name
Rough Semirings-valued Fuzzy Sets with Application
Original language description
Many of the new fuzzy structures with complete $MV$-algebras as value sets, such as hesitant, intuitionistic, neutrosophic, or fuzzy soft sets, can be transformed into one type of fuzzy sets, called $R$-fuzzy sets, with values in special pairs of semirings. We use this theory to define $R$-fuzzy relations, lower and upper approximations of $R$-fuzzy sets by $R$-relations and rough $R$-fuzzy sets and we show that these notions can be universally applied to any fuzzy type structure that is transformable to $R$-fuzzy sets. As an example we also show how this general theory can be used to determine the upper and lower approximations of a colour segment corresponding to a particular colour.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
13
Country of publishing house
CH - SWITZERLAND
Number of pages
31
Pages from-to
1-31
UT code for WoS article
000824046500001
EID of the result in the Scopus database
2-s2.0-85133618701