All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Image segmentation losses with modules expressing a relationship between predictions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302FC5" target="_blank" >RIV/61988987:17610/22:A2302FC5 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-08974-9_27" target="_blank" >http://dx.doi.org/10.1007/978-3-031-08974-9_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-08974-9_27" target="_blank" >10.1007/978-3-031-08974-9_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Image segmentation losses with modules expressing a relationship between predictions

  • Original language description

    We focus on semantic image segmentation with the usage of deep neural networks and give emphasis on the loss functions used for training the networks. Considering region-based losses, Dice loss, and Tversky loss, we propose two independent modules that easily modify the loss functions to take into account the relationship between the class predictions and increase the slope of the gradient. The first module expresses the ambiguity between classes and the second module utilizes a differentiable soft argmax function. Each of the modules is used before the standard loss is computed and remains untouched. In the benchmark, we involved two neural network architectures with two different backbones, selected two loss functions, and examined separately two scenarios for softmax and sigmoid top activation functions. In the experiment, we demonstrate the usefulness of our modules by improving the IOU and F1 coefficients on the test dataset for all scenarios tested. Moreover, the usage of the modules decreases overfitting. The proposed modules are easy to integrate into existing solutions and add near-zero computational overhead.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Information Processing and Management of Uncertainty in Knowledge-Based Systems

  • ISBN

    978-3-031-08973-2

  • ISSN

    1865-0929

  • e-ISSN

    1865-0937

  • Number of pages

    12

  • Pages from-to

    343-354

  • Publisher name

    Springer

  • Place of publication

    Milano

  • Event location

    Milano

  • Event date

    Jul 11, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article