All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the structure of alpha-limit sets of backward trajectories for graph maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302I3E" target="_blank" >RIV/61988987:17610/22:A2302I3E - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aimsciences.org/article/doi/10.3934/dcds.2021159" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/dcds.2021159</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/dcds.2021159" target="_blank" >10.3934/dcds.2021159</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the structure of alpha-limit sets of backward trajectories for graph maps

  • Original language description

    In the paper we study what sets can be obtained as alpha-limit sets of backward trajectories in graph maps. We show that in the case of mixing maps, all those alpha-limit sets are omega-limit sets and for all but finitely many points x, we can obtain every omega-limits set as the alpha-limit set of a backward trajectory starting in x. For zero entropy maps, every alpha-limit set of a backward trajectory is a minimal set. In the case of maps with positive entropy, we obtain a partial characterization which is very close to complete picture of the possible situations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    DISCRETE CONT DYN S

  • ISSN

    1078-0947

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    1435-1463

  • UT code for WoS article

    000722663000001

  • EID of the result in the Scopus database

    2-s2.0-85124549669