Fuzzy Property Grammars for Gradience in Natural Language
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402C9M" target="_blank" >RIV/61988987:17610/23:A2402C9M - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:7L9HSXXH
Result on the web
<a href="https://www.mdpi.com/2227-7390/11/3/735" target="_blank" >https://www.mdpi.com/2227-7390/11/3/735</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11030735" target="_blank" >10.3390/math11030735</a>
Alternative languages
Result language
angličtina
Original language name
Fuzzy Property Grammars for Gradience in Natural Language
Original language description
This paper introduces a new grammatical framework, a Fuzzy Property Grammars (FPG). This is a model based on Property Grammars and Fuzzy Natural Logic. Such grammatical framework is constraint-based and provides a new way to formally characterize gradience by representing grammaticality degrees regarding linguistic competence (without involving speakers judgments). The paper provides a formal-logical characterization of FPG. A test of the framework is presented by implementing an FPG for Spanish. FPG is a formal theory that may serve linguists, computing scientists, and mathematicians since it can capture infinite grammatical structures within the variability of a language.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF18_053%2F0017856" target="_blank" >EF18_053/0017856: Strengthening the university's scientific capacities II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
39
Pages from-to
—
UT code for WoS article
000930308000001
EID of the result in the Scopus database
2-s2.0-85147882421