An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402EPV" target="_blank" >RIV/61988987:17610/23:A2402EPV - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10955-023-03142-2" target="_blank" >https://link.springer.com/article/10.1007/s10955-023-03142-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10955-023-03142-2" target="_blank" >10.1007/s10955-023-03142-2</a>
Alternative languages
Result language
angličtina
Original language name
An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
Original language description
We show that the topological entropy of the billiard map in a Bunimovich stadium is at most log(3.4908).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Statistical Physics
ISSN
0022-4715
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
—
UT code for WoS article
001057937300001
EID of the result in the Scopus database
2-s2.0-85168689924