Decomposition of idempotent pseudo-uninorms via ordinal sum
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402GMP" target="_blank" >RIV/61988987:17610/23:A2402GMP - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0020025523011040" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0020025523011040</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2023.119519" target="_blank" >10.1016/j.ins.2023.119519</a>
Alternative languages
Result language
angličtina
Original language name
Decomposition of idempotent pseudo-uninorms via ordinal sum
Original language description
The decomposition of idempotent pseudo-uninorms is investigated. We show that each idempotent pseudo-uninorm on the unit interval can be decomposed into an ordinal sum of trivial semigroups and non-commutative idempotent semigroups defined on two elements, where the corresponding semigroup operation is the projection to one of the coordinates. Linear orders yielding idempotent pseudo-uninorms via ordinal sum of this type of semigroups are also investigated. The link between linear orders corresponding to an idempotent pseudo-uninorm and its dual pseudouninorm is shown for two types of duality.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Sciences
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
August
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
—
UT code for WoS article
001094548100001
EID of the result in the Scopus database
2-s2.0-85168126991