All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Verifying Validity of Selected Forms of Syllogisms with Intermediate Quantifiers using Peterson's Rules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402IDL" target="_blank" >RIV/61988987:17610/23:A2402IDL - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-39965-7_30" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-39965-7_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-39965-7_30" target="_blank" >10.1007/978-3-031-39965-7_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Verifying Validity of Selected Forms of Syllogisms with Intermediate Quantifiers using Peterson's Rules

  • Original language description

    The most reliable method how validity of a logical syllogism can be verified is to formalize it and show that there is either a formal proof or it is true in any model. A specific method for proving validity is to use special rules that have been used by logicians. However, we cannot be sure that they indeed verify the validity of syllogisms. The goal of this paper is to show that the rules indeed work. In his book, Peterson studied syllogisms with intermediate quantifiers and suggested extension of the rules also to them. In this paper, we formalize them and prove that a logical syllogism of Figure~I with intermediate quantifiers is valid iff it satisfies four extended Peterson’s rules.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EG17_147%2F0020575" target="_blank" >EG17_147/0020575: Consortium for industrial research and development of new applications of laser technologies using artificial intelligence methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 13th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2023,

  • ISBN

    978-3-031-39964-0

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    357-368

  • Publisher name

    Springer

  • Place of publication

    Nizozemí

  • Event location

    Španělsko, Palma

  • Event date

    Sep 4, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article